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STATISTICAL ESTIMATE OF BRITTLE STRENGTH WITH ALLOWANCE FOR CRACK RESISTANCE 

A. I. Korshunov and S. A. Novikov UDC 620.171.3 

The classical statistical approach to the question of the probability of brittle frac- 
ture presupposes the presence in the investigated material of a system of defects, which 
also determines the strength of a specimen made of the material concerned. It is assumed 
that for each specific defect there is a corresponding local strength. The strength of the 
specimen as a whole (at least under static loading) is determined by the strength of the most 
dangerous defect, which in a given specimen has the minimum strength. The scale effect (SE) 
consists in the fact that in a specimen of greater volume there is a greater probability of 
encountering a more dangerous defect. Such an explanation of the SE was first given in Ill, 
and a mathematical treatment using several different approaches was presented first in [2] and 
later in [3]. 

In [2] Weibull introduced the concept of the probability of fracture So of unit volume 
at the stress o, and on the basis of a solution of the statistical problem obtained the frac- 
ture probability S at stress ~ for a specimen of volume V: 

S ~ t - -  e -vn(~), 

where the function n(o) is taken in the form 

n(~) = (~Iao) "~ 

(Oo and m are experimentally selected material constants). 

( l )  

( 2 )  

Then, in [2] from Eq. (i), using 
(2), the following relation between the breaking stress and the volume of the test specimen 
was obtained: 

~p ~ ~ f m  V~/m,  

where I m is a constant for a given state of stress. In more general form 

ap = AV-1/m, (3 )  

w h e r e  A = OoI  m. 

Another approach to the solution of the problem is proposed in [3], namely to find the 
probability W(F)dF that in a specimen of volume V the most dangerous defect is that with the 
parameter F "--F + AF 

i ]~v-1 W (F) dF --~ n V p  (F) t~ (F) dF dF, 
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where n is the average number of defects per unit volume; p(F) is the probability density 

function of the defect parameter. Here, by defect parameter we understand the value of the 
brittle strength. In this case the most probable value of the brittle strength F* of speci- 
mens of a given volume V is determined from the maximum condition 3W(F)/3F = 0. 

Using the Gaussian distribution for p(F), the authors of [3] obtained the following equa- 
tions for the breaking stress as a function of the volume of the test specimen: 

F *  = a + b / V ,  F *  = f o - -  " V A  tg V + B 

for specimens of "small" and "large" volume respectively. Here, a, b, Fo, A, and B are con- 
stants. 

Below we propose a solution of the statistical problem of the probability of brittle 
fracture that relies on linear fracture mechanics and the concept of the weakest link [4]. 
Let a brittle material possess a certain system of defects in the form of elliptical Grif- 
fiths cracks. Then, other things being equal, the strength of a specimen made of the materi- 
al in question will be determined by the crack with the maximum size. 

In order to solve the problem we will employ the approach proposed in [3]; however, as 
the defect parameter we will take not the brittle strength but a function associated with the 
characteristic dimension of the crack. 

Let F(~) be the probability density function of the defect parameter. We assume that 
the parameter ~, without being physically defined, is an increasing function ~(a), where a 
is the characteristic crack dimension. We also assume that the function F(~) has a region 
of definition from ~i to ~2. The probability that a crack taken at random has the ~ parameter 

~* is equal to F(~*)d~. In this case the probability ~ F(~id~, corresponding to the presence 

of a crack with parameter ~* in a specimen of volume V (all the other cracks having a param- 
eter less than ~*) is equal to 

p (~*) d~ = -~VF (~*) F (~) a~ a~, 

where 

i ]~v-1 
(4) 

is the corresponding probability density function; n is the average number of cracks per unit 
volume. The most probable (modal) value of the maximum of the defect parameter for a speci- 

men of given volume is found from the expression 

oP(~)/o~ = o. (5 )  

Dif fe ren t i a t ing  Eq. (4) with allowance for (5), we obtain 

oF (~) . 'F =0. 
h 

(6)  

Let F(E) have a normal distribution, i.e., 

F($)= t. exp[--(~--m)~], 
S V2~ L 2S~ / 

where S and m are the distribution parameters. 

where ~*((E -- m)/S) 
to the form 

In this case 

OF(~)------F($)~ , ~ F(~)d~=gP*(~), 

--co 

is the error function. Taking the above into account, we reduce Eq. (6) 
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~V -- t 

In order to solve the equation obtained, we carry out the following transformations. We in- 
troduce the new variables 

=~V, (8) 

where N is the total number of cracks in the test volume; 

t = (~ - -  m)/S. (9) 

In this case Eq. (7) becomes 

N = y ~ ~ t  exp (t2/2)r + 1. (10)  

Using the equation obtained, we can plot the function t = t(N) (Fig. l) or obtain it in tabu- 

lar form. Then, using (8)-(i0), we obtain the following relation between the most probable 
value of the maximum defect parameter and the volume of the test specimen: 

= t~V)S + m. (11)  

The value of ~ obtained is a modal value corresponding to a quantile of order P of distribu- 
tion (4). 

In this case the quantile of order P of the breaking stress for the corresponding dis- 
tribution is found from the expression 

a b = l(a(~p)), (12) 

where f is a function of the relation between the breaking stress and tbe characteristic 
crack dimension; a(<) is the inverse function of <(a). 

We now turn to the determination of the breaking stress as a function of test specimen 
volume, assuming as a first approximation that o b corresponds to the average value of the 
breaking stress. We will consider an infinite solid with an internal discoidal crack of 
diameter a. In the case of a tensile stress ~ we have [5] 

where K I is the stress intensity coefficient. Since in the case considered the crack diam- 
eter is much less than the characteristic dimensions of the body, it is possible to assume 
that the body is infinite; then the expression for the breaking stress takes the form 

~b = KIc "l/'-~, (13) 

where KIC is the critical stress intensity coefficient. In Eq. (13), as a we will take the 
value ap; then, in accordance with Eqs. (11)-(13), taking into account the above-mentioned 
assumption, we obtain the following relation between the strength of the specimen and the 
test volume: 

a b =  KIC ]/~/[2a(t~V)S ~ m)l. (14)  

It is convenient to consider the form of the function ~(a) with reference to the microstruc- 
ture of a foam plastic; in this case we treat the pores as defects and take the pore diameter 
as the characteristic dimension. This material has the advantage that even at low magnifica- 
tion it is possible to obtain a quite accurate estimate of the volume pore density and the 
pore sizes = 6.[6]'9 In Fig. 2 we have constructed a pore diameter histogram for PPU-307 foam 
plastic (v kN/mm~/2which is closely approximated by a logarithmically normal distribu- 
tion. In this case Eq. (14) can be written in the form 

~b = KIC V~/[2 exp ( t ~ V ) S . +  mi]. (15) 

Table 1 gives the experimental results of tensile tests on PPU-307 foam plastic_( X = 6.9 
kN/m a) and the approximate results obtained using Eq. (15); in this case the values n = 206 
per mm a, S = 0.524, andm = --2.082 were obtained from an analysis of the microstructure, and 

KIC = 16.5N/mm a/2 from the results of the approximation. The tabulated data indicate good 
agreement between experiment and calculation and confirm the reliability of the equation ob- 
tained. The value KIC = 16.5 N/mm 3/2 obtained as a result of the approximation is of the 
same order as the values of KIC for nonmetals [7]. 
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TABLE 1 

o b , MPa o b, MPa 
v, mms iv ~ ~ )l'experiment-' (calculation) 

8,04.102 
4,31.10 a 
2,17. lOa 

1,74.105 
9,31.105 
4,69.10 a 

4,40 
4,75 
5,06 

18,6 I 18,5 
16,9 t6,9 
15,5 15,6 

As a second example it is possible to take a sintered material with artificially or- 
ganized defects, for example VNMZ-2.* Thus, for VNMZ-2 the experimental values of the 
strength were 536 and 455 MPa and the calculated values 547 and 445 MPa for volumes of 2.83" 
101 and 4.71"103 mm ~ respectively. 

In order to describe arbitrary scale effect results without a preliminary analysis of 
the microstructure, it is desirable to reduce Eq. (15) to the form 

~_b = A exp [--Bt(~V)],  (16)  

where A = Kic/~/[2exp(m)]; B = S/2. The equation obtained makes it possible to describe the 
experimental results over a broad range of variation of the test volume. In this respect 
Eq. (16) is more convenient than the scale effect equations obtained in [3]. Thus, in [3], 
owing to a number of functional approximations, two equations were used: one for "small- 
volume" and the other for "large-volume" specimens. Such differentiation is inconvenient 
and prevents extrapolation. 

It is interesting to compare Eq. (3) with our Eq. (16). With Eq. (3) it is possible to 
approximate the experimental results for any part of the scale dependence but, as shown in 
[8], it cannot be used to describe the results where there is a considerable variation in the 
volume of the test specimens. In [8], to overcome this disadvantage, it is proposed to add 
a constant term on the right of Eq. (3), which does not fit in with the theoretical premises. 

In Fig. 3 we have plotted o b against the specimen volume for PPU-307 foam plastic (y = 
6.9 kN/m3). These results were approximated by means of both Eq. (3) (curve 2) and Eq. (16) 
(curve i). It is clear from Fig. 3 that in the case of Eq. (16) there is a diminution in the 
intensity of the scale effect [3(log Ob)/3(log V)] with increase in test volume, as observed 
in practice [8]. In the case of Eq. (3), however, the intensity of the scale effect remains 
constant and equal to 1/m. Curves 1 and 2 (see Fig. 3) coincide over an internal variation 
of the volume of approximately three orders. Hence it follows that in describing the experi- 
mental results of the scale dependence, for a small change in volume it is possible to use 
Eq. (3); however, extrapolation is then excluded. Our Eq. (15) (or (16)) makes it possible 
to approximate the experimental results over a much greater range of variation of the test 
volume and permits long-range extrapolation. 
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TEMPERATURE--FREQUENCY DEPENDENCE OF MECHANICAL LOSSES UNDER PERIODIC 

DEFORMATION OF LAMINAR GLASS-CARBON PLASTICS 

L. S. Elistratova, V. V. Kolokol'chikov, 
and A. S. Podkopaev 

UDC 534~28+532.135 

Experimental results [1-3] indicate that under periodic deformation the temperature-- 
frequency locations of the relaxation maximums of the tangent of the mechanical loss angle 
tan 6 of a laminar composite and the material of its matrix do not agree. The reasons and 
regularities for such a shift of the tan ~ maximums remain unexplained within the framework of 
these papers. Meanwhile it is shown theoretically that the insertion of an elastic filler 
in a polymer material as well as the passage from shear over to longitudinal or bending vi- 
brations in unfilled polymers and composites will distort the relaxation spectrum and change 
the effective relaxation time [4]. 

Regularities in the temperature--frequency location and the magnitude of the loss tan- 
gent maximum and the real part of the Young's modulus in laminar composites are examined be- 
low. The mixture rules proposed in [5, 6] were used here. The formulas in [6] are approxi- 
mate and convenient for utilization for a large number of constituents in the composite. 
Moreover, they permit easy evaluation of the stress concentration coefficients in the 
composite material [7]. As is mentioned in [8], such approaches that take account of the 
actual mode of interaction between the composite constituents will permit obtaining results 
that are in satisfactory agreement with test data and are consequently adequate for tech- 
nical applications. 

I. Let a composite, which is transversally isotropic on the average, consist of a visco- 
elastic matrix and an elastic filler. The stochastic inhomogeneity of the composite is not 
taken into account. The energy dissipation mechanism is related only to the inelastic be- 
havior of the matrix [9]. There is no relaxation of the bulk modulus K in a viscoelastic 
composite. Shear relaxation is described by the Yu. N. Rabotnov kernel, i.e., in the opera- 
tor representation the shear modulus of the viscoelastic component is written as follows 
[i0]: 

= v=[~ - xY(x)l, (1.1) 

where ~x) is the Yu. N. Rabotnov resolvent operator while the rheological parameters x, X are 
expressed in terms of the unrelaxed G~ and relaxed Go values of the shear modulus and the 
effective relaxation time TE: 

z=--~Tv , % = ( G = - - G o ) / G = ~  (O<?~i) ,  (1.2) 

where y is the kernel singularity parameter. 

The expression for the Young's modulus operator of the viscoelastic constituent has the 

form [4] ~=E~[l--EE~(x~)],  

x z = --T~ v = x + G~Z/(3K ~ G~), E~ = 9 g v ~ / ( 3 g  + G~), (1.3) 
ZE = ~Z, t/q = t + G J 3 K .  
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